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Abstract
We describe a technique for compressing noise sets. We use so-called AA Patterns: ornamental algorithmic-art point sets that
are structured in a complex intertwined manner. We optimize these patterns to match a noise profile, and exploit their powerful
inherent neighborhood identification mechanism to efficiently store the result of optimization.

1. Introduction

Point sets are ubiquitous in computer graphics. Different appli-
cations might have different requirements, but irregular isotropic
point sets are universal and suit many applications including sam-
pling, stippling and halftoning, meshing and remeshing, and dis-
tributing objects. Such point sets are typically extracted from white
noise via expensive refinement processes. The irregularity of these
colored noise sets — most commonly blue [Uli88] — is challeng-
ing, and many algorithms were suggested trying to reduce the cost
of production and/or improve the quality [Coo86, MF92, Jon06,
DH06, Wei08, BSD09, GM09, SGBW10, LWSF10, EDP∗11, Fat11,
SHD11,XLGG11,EMP∗12,dGBOD12,ZHWW12,OG12,HSD13,
GYJZ15, JZW∗15].

The high production cost of noise sets lead to the idea of pro-
ducing them offline and storing them for later use. This idea of
pre-computing is not a new one [DW85], and it also received a lot
of attention during the past three decades. The main challenge is
that storing such sets is expensive: they are difficult to compress
because of their high entropy. But storage is not the only cost in-
volved in handling such noise sets: they are also difficult to retrieve
efficiently, since irregularity makes points difficult to index.

The traditional approach for exporting irregular point sets is to
lay them in tiles, and assemble these tiles into a tiling at run-time.
Tile-based solutions offer a wide range of options that trade qual-
ity for price (memory and/or performance), from a single toroidal
square tile [Gla95], the cheapest (in both senses of the word), to
very sophisticated, carefully designed tile sets such as polyhexes
[WPC∗14], which offer very good quality but are also very ex-
pensive in terms of memory footprint. There are more options in
between [CSHD03,ODJ04,KCODL06,LD06,Ost07], but the ratio
of quality to table sizes remains low for all tiling solutions we are
aware of, not to mention the excessive coding complexity to han-
dle the indexing and retrieval of individual samples, as well as the
construction of the tiling.

1.1. Our Idea

We propose a novel solution to the problem of compressing noise
sets: instead of trying to compress an arbitrary noise set, we start
from a compressible point set and morph it into the desirable noise
profile: blue, green, etc. [ZHWW12]. Rather than storing the points
themselves we only have to store the required displacements for
such morphing.

Algorithmic Art (AA) is probably the right context to search for
such compressible point sets, where “algorithmic” implies com-
pressibility of the underlying set, while “art” suplements the high
entropy needed for good quality noise. Since our goal is to lay indi-
vidual samples, we are interested in ornamental AA built from dis-
crete repeating elements that are shuffled in subtle complex man-
ners. Indeed, having repeating elements is essential for a look-up
solution, but such repetition is also required to be complex.

We found an excellent candidate in so-called AA Patterns
[Ahm11c]. These patterns are not only ornamental but also point-
based, which brings us one step closer to our goal. In the rest of
this article we describe AA Patterns and explain how they might
be morphed into different noise profiles, with very little memory
requirements to store morphing information.

2. AA Patterns

“AA Patterns” refers to a parametric point-based algorithmic art
that emerges from quantization aliasing artifacts under certain lin-
ear transformations [Ahm11c, Ahm11a, Ahm11b, Ahm12]. Specif-
ically, if an image is scanned pixel by pixel, and each pixel (x,y) is
projected into a target pixel (X ,Y ) in a view-port using:[
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][
x
y

]⌋
α ∈ (1,2) , (1)

then some source pixels overlap on the same target, while some tar-
get pixels are left empty. AA(α) is the set of these empty pixels.
Following a sequence of transformations, the pattern can be asso-
ciated directly with the source points using this simple algebraic
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Figure 1: A graphical representation of Eqs. (2, 3, 4), an appropri-
ately transformed array of unit cells is used to filter points in the
integer grid. The index (dX ,dY ) is the location of a point in the
hosting cell, and the size of the set (green) region in each cell is
t× t.

formulation:

AA(α) = {(x,y) : x,y ∈ Z;dX < t;dY < t} , (2)

where

dX = dX(x,y), {(αx+ y)/2}
dY = dY(x,y), {(αy+ x)/2} , (3)

and

t = (α−1)/2 . (4)

Thus, an AA Pattern is a subset of a regular grid: each grid point
(x,y) is mapped to an index (dX ,dY ) in the unit torus using Eq. (3),
then points are filtered by testing their indexes against a certain
threshold defined in Eq. (4). We call the t× t block of valid indexes
the “set region”; see Figure 1.

3. Neighborhood Indexing in AA Patterns

An important property of the index mapping (Eq. (3)) is that it is
linear; that is, any pattern-space translation corresponds to a spe-
cific index-space translation†:

dX(x+∆x,y+∆y) = dX(x,y)+dX(∆x,∆y) .

An important consequence is that any arrangement of points in the
grid (a triangle, square, cross, whatever) has an index-space image:
a specific arrangement of indexes, and that image is unique for each
arrangement, up to wrapping around the edge of the unit torus. Now
an arrangement of points exists in the pattern iff its whole image fits
in the set region; see Figure 2.

From here we may see that any arrangement of points found in
the pattern repeats infinitely many times. There are two possibili-
ties for this: when α is a rational number p/q, the index-space is a
finite 2q×2q set, and the pattern is periodic; hence each and every
detail repeats periodically. On the other hand, when α is irrational
indexes are unique, and the pattern is aperiodic. Even though in-
dexes are dense, the index (t, t) never exists, therefore any image

† Mind that all index-space arithmetic is modulo 1.

Figure 2: An arrangement of grid points (left, black and red) and
its index-space image (right). The image completely fits inside the
set region (gray), indicating that the corresponding arrangement of
points is a valid subset of the pattern.

Figure 3: Painting similar “clusters” of points in similar colors
corresponds to complex fractal index-space maps. The density of
each cluster in the pattern is determined by the margin that its im-
age leaves in the set region. An algorithm for retrieving such maps
is described in [Ahm11c].

that fits in the set region leaves some room for translation. Thus,
any index-space image repeats infinitely many times, and the cor-
responding arrangement of points repeats infinitely many times in
the pattern. Note that small index-space translations correspond to
large pattern-space translations.

Index-space images of individual pattern-space arrangements
turn into index-space maps when all similar arrangements are ad-
dressed. For example, when all distinguishable “clusters” of similar
shapes are painted similarly, it reflects as a fractal index-space map;
see Figure 3.

Having repeating elements is important for look-up methods,
and being able to identify similar neighborhoods is the key for
efficiently tabulating optimization results. For example, the over-
all displacement of a point in n iterations of Lloyd’s relaxation
[MF92, Llo82] is — roughly speaking — determined by the initial
relative positions of n rings of neighbors around that point. We are
therefore interested in identifying identical square neighborhoods
of a certain size around points in the pattern.

Unlike the fractal coloring maps (Figure 3), rectangular neigh-
borhood around points are identified by simple (checkered) index-
space maps like the one in Figure 4. Retrieving such maps is de-
scribed in detail in [AHD15]. Once such a map is available, it can
be used to record the displacement of points during optimization,
since points with identical neighborhoods tend to respond similarly
to common optimization algorithms. For vanilla Lloyd’s relaxation
the behavior of points automatically follows the map, but for other
optimizations we might need to use the map to influence the pro-
cess, much like the use of structural indexes in tile-based meth-
ods [ODJ04, Ost07, WPC∗14].
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Figure 4: Ranges of indexes in AA
(√

3
)
, and the corresponding

neighborhood around indexed points. The map is multi-resolution:
each block is subdivided into smaller blocks if a wider neighbor-
hood is considered. Indeed, the whole pattern around a point is
known if the exact index is given.

Actual optimization is performed only on a small portion of the
pattern, since it is provable that all distinct neighborhoods in the
pattern exist in only a small part of it. Even better, it is provable
that there exists a small periodic AA Pattern with the same set of
distinct neighborhoods as any infinite aperiodic AA Pattern.

4. Summary of Results

Neighborhood maps are inherent in AA Patterns, they do not have
to be tabulated. These maps are hierarchical: they can be retrieved
to any desirable resolution, corresponding to arbitrary large neigh-
borhoods around the points. The size of the map grows linearly
with the size of identified neighborhood, in sharp contrast to tile-
based methods where the number of distinct neighborhoods grows
exponentially. We are unaware of a tiling method that can index
even the second ring of neighbors and stay within practical lim-
its of resources. In AA Patterns we may index more than 20 rings
of neighbors using few kilobytes maps. This leads to much better
quality combined with much less resources.

With a production rate of 100M points per second in commod-
ity hardware, our method is an order of magnitude faster than the
fastest known tiling method. Another subtle advantage is the full
random access to points. This is important for some applications
like distributing objects.

5. Future Perspectives

We plan to extend the concept to adaptive generation of samples.
AA Patterns are self-similar by nature [Ahm12], but so far we faced
two obstacles: that this self-similarity is topological but not geo-
metrical, and that it is met upon zooming-out, not zooming-in. The
two problems seem to be inter-related.

Currently AA Patterns are defined only in two dimensions. We
are investigating ways to extend them — hence the sampling con-
cept based on them — to higher dimensions.
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