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Continuous-Line-Based Halftoning with Pinwheel Tiles
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Figure 1: Various kinds of animations enabled by our continuous-line drawing framework. The example in the top is suitable for transition
effects in presentations, the one in the middle suits animated GIFs, while the morphing one in the bottom demonstrates that we can even cope
with arbitrary motion pictures.

Abstract
We describe a technique for continuous-line-based halftoning with space-filling curves, namely Segerman’s pinwheel curve,
which is based on Conway’s pinwheel tiles. We adapt the length of the curve passing through the tiles in accordance with a
supplied density map, e.g. a grayscale image. We use the subdivision depth of the tiling for a coarse control of the curve length,
and we describe a finer control to faithfully match the density map. Our technique exhibits excellent temporal coherence, making
it suitable for animated images.

1. Introduction

Halftoning is the process of rendering a continuous-tone image us-
ing a discrete set of tones, typically only one. It was originally
meant to render full-tone images in monochrome devices such as
printers, and the goal is to make a distant view of the rendered
image indistinguishable from the continuous-tone image. This is
achieved by controlling the density of the constituent elements,
e.g. dots of ink, so that it matches the level of grayness in the
corresponding part of the given image [PB96]. A close-up of the
halftoned image, however, would inevitably reveal the discretized
nature of the halftoning process, and the constituent elements be-
come visible.

Halftoning is an old process, mainly associated with printing.
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Digital halftoning emerged with the advent of digital computers,
and received a lot of attention in the seventies and eighties of last
century. The primary goal was to conceal the constituent color el-
ements, taking the nature of the printer into consideration. This
is known as dithering [Uli87]. The generally accepted principle
is that an even distribution of the elements with no directional
preference (isotropic) achieves the best dithering results. Ulich-
ney [Uli87, Uli88] coined the name “blue noise” to describe such a
distribution, characterizing it by its frequency power spectrum.

In contrast to the main stream in halftoning, aimed at concealing
the constituent elements that produce the tone of the image, a dif-
ferent line of interest emerged aimed at stylized halftoning, where
a close-up reveals some interesting or unexpected details. For ex-
ample, Ostromoukhov [OH95] used text and artistic elements, and
Bosch [Bos11] used duotone Truchet tiles as elements.

With the advent of high-resolution printing technology, the ba-
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sic problem of halftoning has become less important. On the other
hand, the need for stylized halftoning continues to evolve in the
“Facebook” era, where personalizing images is highly desirable. In
this paper we present a new approach for stylized halftoning, based
on the pinwheel tiling [Rad94]. The concept we present bear a dis-
tinctive style, as in Figure 1, is fast, enabling interactive or even
real-time rates, and exhibits excellent temporal coherence, enabling
the stylization of animations or morphing.

2. Related Work

Line-based halftoning is a sub-category of stylized halftoning
where the elements are straight or curved line segments. The key
idea is to use a curve-generating process, and parameterize it such
that it generates longer scribbled curves at darker parts of the
rendered image. The style varies significantly with the employed
technique. For example, Pnueli and Bruckstein [PB96] develop
Schroeder idea [Sch83] of employing Eikonal equation, which pro-
duces nested non-intersecting contour lines, Pedersen and Singh
[PS06] use an iterative process to develop a labyrinth-like con-
tinuous curve, Browne [Bro08] uses Truchet-like contours, lead-
ing to a bumped curve, Ahmed [Ahm14] uses a recursive subdivi-
sion of the rendered image, leading to different axes-aligned styles,
and Ahmed and Deussen [AD16] use an ensemble of amplitude-
modulated waves to render scan lines of the image.

A generic approach for producing density-controlled lines is to
connect density-controlled sample points. This idea was first in-
troduced by Bosch and Herman [BH04], who propose solving the
traveling salesman problem (TSP) to connect the points. The idea
was greatly improved by Kaplan and Bosch [KB05], who renamed
it TSP Art. An equally-impressive style was presented by Inoue
and Urahama [IU09], who propose using a minimum spanning tree
(MST) to connect the points, which is easier to compute than TSP.
Ahmed [Ahm15] describes a generic tone-correction approach to
account for moving from dimension-less points to one-dimensional
lines, and describes a few more styles. The sample points are typ-
ically generated as a blue noise distribution using, for example,
the blue-noise optimal transport (BNOT) algorithm [dGBOD12].
Thanks to this blue-noise distribution of the underlying points, all
these styles are highly isotropic. TSP Art is distinctively charac-
terized by a non-self-intersecting flow of the closed curve. On the
downside, these methods call for a preliminary process like BNOT
for distributing the points, and another process for solving the des-
ignated connectivity model, which adds significant complexity. The
method we present below is self-contained and simple, and pro-
duces a non-self-intersecting close curve as well.

Recently, Stoppel and Bruckner [SB19] introduced an integrated
framework for stylized halftoning. Instead of defining a specific
style, their framework is plugin-based, enabling the users to mix
and match between different styles, and define their own new styles.
In contrast to this, our method is self-contained, producing the
whole halftoning curve as a single continuous line.

Recently, Swart [Swa17] described an approach to morph TSP
Art. In addition to the inherent complexity of computing TSP Art,
there is extra computation of the morphing. In contrast, method we
describe here exhibits excellent temporal coherence, and readily
enables animation at interactive or even real-time rates.
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Figure 2: A pinwheel tile, and its subdivision into five child tiles.

3. Rendering with Pinwheel Curve

Pinwheel tiles are right-angled triangles of side lengths 1 and 2, that
can be subdivided into 5 smaller copies of themselves, as illustrated
in Figure 2. They are attributed to the late John Conway, and they
received special interest of established mathematicians like Con-
way and Radin [Rad94] because they are the first known rep-tile
(i.e self-paving tile), among only a few, that keeps adding new tile
orientations as the subdivision process is continued.

Akin to space-filling curves like Peano’s and Hilbert’s, Segerman
[Seg14] described a space-filling curve based on pinwheel tiling, as
in Figure 3, obtained by connecting the centroids of triangles in a
specific order, as illustrated in Figure 4. The idea is quite simple,
but care must be taken in ordering the triangles to ensure a non-self-
intersecting curve. This can be worked out by inspection. Observ-
ing the labeling in Figure 2, let the curve pass from vertex B to C,
i.e from 1 to 5, as in the leftmost triangle in Figure 4. Then we ob-
serve that the flow is inverted to go from C to B in the middlemost
child triangles 3 and 4. Thus, a continuous curve is obtained by: a)
processing the child tiles in the designated order, either 1-to-5 or
5-to-1, and b) designating an inverted order of the parent’s for child
3 and 4. We provide a sample code in the supplemental materials.

The idea for using pinwheel curves for halftoning is simple: we
subdivide more at darker parts of the underlying image, producing
a squigglier, hence longer, hence darker curve. Realizing this idea,
is not trivial, though, as we will see through the following discus-
sion. While other space-filling curves can be used, the distribution
of centroids of pinwheel tiles (Figure 5) inherently exhibits a blue
noise spectrum, as noted by Ahmed [Ahm19], which is highly de-
sirable, as mentioned in the introduction.

3.1. Subdivision

We start by designating a line weight to indicate the nominal
amount of darkness per unit length of our curve. This is a param-
eter availed to the end users, through which they control the level
of detail they would like to render. We then initialize a stack with
the four top-most triangles in Figure 4, and initialize a list of output
points with the top-center point (0.5, 1). The structure to describe
a tile contains two elements: a transformation matrix m that maps
the relative coordinates inside the tile to absolute coordinates, and a
Boolean parameter BtoC telling whether the tile is traversed from B
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Figure 3: Interest panel for the Department of Mathematics and
Statistics at Colby College, designed by Henry Segerman. Photo
courtesy of Henry Segerman, used with permission.

to C or the reverse. The leftmost pair of tiles in Figure 4 is traversed
from B to C, while the two rightmost are traversed in a reversed or-
der.

The topmost triangular tile is retrieved from the stack for pro-
cessing. A density map integrator is used to compute the total
amount of “ink” (the sum of the pixels, if white is 0) in the tile,
which we refer to as the mass of the tile. We use exact computa-
tion, and provide the code in the supplementary material. The mass
of the tile is compared to the length of the line segment from the
last generated point to the centroid of the triangle, weighted by the
nominated line weight. If this segment is adequate to account for
the enclosed mass then we add the centroid to the list of generated
points, and proceed to process the next tile in the stack. If not, we
generate five child tiles by concatenating the appropriate transfor-
mations to the parent’s matrix, and insert them in the stack in the
appropriate order as indicated by the BtoC parameter, making sure
that the BtoC parameter is flipped for the third and fourth child.
Note that the insertion order in the stack is the reverse of the pro-
cessing order. The process is continued until the stack is empty.
Finally, the points are connected to make the rendering.Figure

Figure 6(a) shows the subdivision and a halftoned image with the

Figure 4: Four iterations of pinwheel space-filling curve. In the
original curve presented by Segerman, only two triangles are used
(the rightmost two here), but we use four to render square images.
Since the line from the last point in the rightmost triangle to the
first point in the leftmost may cross the line segments in the middle
triangles, we add a single auxiliary point at the top center.

Point Distribution Frequency Power Spectrum

Figure 5: Spatial distribution and frequency power spectrum of the
centroids of a pinwheel tiling.
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(a) (b) (c)

Figure 6: (top) Distribution of vertices and (bottom) the resulting renderings using different levels of control. We use a subdivision depth of 5
for the top plots for the sake of clarity, and a depth of 6 in the final renderings for higher quality. (a) Subdivision only, placing a vertex at the
centroid of each final-depth triangle; the distribution is smooth but banded. (b) Using five vertices at once inside each triangle to squiggle
the lines; the vertices are condensed at the beginning of octaves (lighter areas of the bands in (a)), producing some noise. (c) Adding the
squiggling vertices incrementally, leading to five smooth sub-bands of octaves.

outlined algorithm. While the image is perceivable, it is not really
satisfactory. Specifically, it suffers from a banding effect similar to
thresholding in classic halftoning. The reason is evident: we only
have a discrete set of gray tones, namely the number of subdivision
levels — six in this example. We refer to these levels as octaves,
following Ostromoukhov [Ost07].

3.2. Gradual Squiggling

To avoid this quantization problem we make a gradual change be-
tween the single anchor point in the centroid, and the five-segments
line at the next level. To do that we may define five points in the seg-
ment connecting the last point to the centroid, when this segment
is adequate, and gradually move each point to the corresponding
centroid of the child triangle, making a longer line that can ac-
count for tones between the octaves, as illustrated in Figure 7. We
use the trapezoid method to compute the appropriate interpolation
such that the line length correctly matches the enclosed mass. Fig-
ure 6(b) shows the halftoned image with this improvement. Please

Figure 7: Continuous tone can be obtained by interpolating be-
tween the single-point centroid in one octave and the five-points
chain of centroids of the next octave.
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Figure 8: A smooth curve is obtained by connecting the mid-points
of the original line segments with Bézier curves, using the original
vertices as control points.

look from a sufficient distance to see the image, e.g. 1.5 meters for
an A4 paper.

While the mentioned squiggling approach successfully captures
the tone gradients, it still suffers from a subtle problem, that in rare
situations, depending on the location of the connecting points in
the adjacent triangles, the line might cross itself. This violates an
important and desirable feature, so it has to be avoided. To fix this
problem we apply the squiggling process incrementally. We first
split the single segment to the parent’s centroid at the middle, and
gradually move the middle point until it reaches the centroid of the
entry child, either 1 when going B to C, or 5 when going C to B. To
cope with more mass, we then advance the centroid of the parent
towards the centroid of the exit child. Next, we split the segment
between the two centroids, and gradually move the middle point
towards the centroid of the middle child, 3. Finally, we split the two
segments, and gradually advance them towards the centroids of the
remaining child tiles, 2 and 4. This way we obtain a smooth gradual
change of tones, and a smoother curve, as illustrated in Figure 6(c).

Finally, the connecting curve can be smoothed further by replac-
ing the straight line segments with Bézier curves. For example, we
may connect curved segments between midpoints of the original
line segments, using the original points as control points of the
curves, as illustrated in Figure 8. Figure 9 shows the final rendering
with this smoothing.

3.3. Animation

With the gradual tone changes we introduced in the preceding sub-
section, our continuous-line halftoning framework becomes coher-

Figure 9: Final rendering with smooth curves.

ent with gradual changes in the underlying image, enabling differ-
ent kinds of animations, as illustrated in Figure 1.

4. Discussion and Conclusion

We presented a simple yet effective approach for generating aes-
thetic line-based halftonings using pinwheel tiles. The method is
self-contained, and is powerful enough to cope with animated pic-
tures, producing a few frames per seconds. The performance bottle-
neck is in computing the mass of the triangles, and we recommend
using low-resolution inputs.

While we are satisfied by the current quality, there is still a sub-
tle discontinuity when moving from one to another octave. When
the variance is high between the child tiles, it may happen that one
child immediately moves to the following octave when control is
passed to it. This is seen as a jump in the curve when animated.
As of this writing, we were unable to find a good solution to this
challenging problem, so we leave it for future research. We think
this problem is challenging enough to make a subject for an excit-
ing competition between students or programmers. The goal is to
make a decision without backtracking. That being said, this prob-
lem is only related to the animated output, and does not affect still
renderings.

It is worth noting that not all continuous-line drawing methods
based on connecting sample points aim at halftoning. For example,
the graph-based approach of Wong and Takahashi [WT11] aims at
generating illustrations rather than halftonings. Adapting our pre-
sented method for this type of illustrations could be an interesting
direction for future research.
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