
An Implementation Algorithm of 2D Sobol Sequence
Fast, Elegant, and Compact

Abdalla G. M. Ahmed †

Khartoum, Sudan

(a) Sobol (b) Hammersley (c) LP (d) MMDe

Figure 1: Using only a few lines of code, we can generate (a) vanilla 2D Sobol sample points at 5× the speed of state of the art imple-
mentations. At a negligible additional cost, we can also rearrange the points into (b) an improved distribution, including ones with (c) least
discrepancy and (d) maximized minimum distance between points.

Abstract
We present a novel algorithm to evaluate 2D Sobol samples, bringing the time complexity for m-bit resolution to O(log(m))
instead of O(m), thus gaining tangible performance boost. We take advantage of the geometric structure of the underlying
Pascal matrix to factor it into diagonally-running matrices that are efficient to implement using bit-wise operations. We extend
the method to inversion in global Sobol sampling. The algorithms form a flexible framework, able to generate several well-
known sample sequences as special cases. We compare the speed performance and memory footprint of our algorithms to state
of the art implementations.

1. Introduction

The impressive renderings (for their time) by Cook et al. [CPC84]
arguably marked the beginning of the era of (quasi-)Monte-Carlo-
based rendering. Heavily based on sampling, this initiated a long
history of research on providing low-cost high-quality sampling
patterns. Among the many proposed alternatives come Sobol se-
quences [Sob67], combining excellent numeric integration perfor-
mance thanks to their low-discrepancy properties [Nie92] (cf. ran-
dom sampling), very high generation rates thanks to their binary
nature (cf. Halton sequence), relatively low memory footprint (cf.
lookup-based methods), and excellent scaling with dimension (cf.

† abdalla_gafar@hotmail.com

blue noise). These features, among others, arguably make Sobol
sequences lead the competition by far, providing low-cost high-
performance sampling patterns for building reliable and versatile
rendering samplers. Indeed, over its successive editions, the render-
ing reference book PBRT [PJH23] used three different Sobol-based
samplers as its default.

A Sobol sequence is obtained by linearly mapping sample in-
dices to coordinates using an ordered set (tuple) I = , P = , . . .

 (1)

of binary matrices, one matrix per dimension, displayed here us-
ing (1) black and (0) gray dots for better visibility. These matri-

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

Eurographics Symposium on Rendering (2024)
E. Garces and E. Haines (Editors)

DOI: 10.2312/sr.20241147 https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0002-2348-6897
https://doi.org/10.2312/sr.20241147


2 of 9 Ahmed / An Implementation Algorithm of 2D Sobol Sequence: Fast, Elegant, and Compact

ces are computed using special algebraic recipes that derive sub-
sequent columns from initial ones. Understanding theses recipes is
not needed for this paper, and the interested reader is referred to
Sobol [Sob67] or Bratley and Fox [BF88]. Once the matrices are
there, each coordinate of the vth sample, binary encoded as

v =
∞
∑
i=1

vi2
i−1 = · · ·v3v2v1 , (2)

is obtained by multiplying the respective matrix by a bit-reversed
column vector representation of v. For example,

 x1
x2
...

 ,

 y1
y2
...


= (I,P)

 v1
v2
...

 (3)

gives the 2D projection of the vth sample. We emphasize that bits
of each coordinate in Eq. (3) are generated by the respective matrix
in Eq. (1), and the bits of the indexing vector are in a reverse or-
dering, so v1 is the least significant bit of the sample index. These
computations use Galois Field 2, that is, modulo-2 addition, which
translates into fast primitive bit operations that account for the ex-
ceptional speed performance of Sobol sequences.

In this paper, we are mostly interested in the first two matrices
shown in Eq. (1), known as (I) the identity and (P) Pascal matri-
ces, which are invariant, unlike the subsequent matrices that may
vary by user initialization. Indeed, of the three Sobol-based sam-
plers of PBRT, two, the (0, 2)-Sequence Sampler and ZSampler,
are based only on this 2D pair of Sobol dimensions, while the third,
Global Sobol sampler, uses these two dimensions to sample the im-
age plane, posing a requirement to invert them for sample indices.

The use of Sobol sequences in computer graphics was primar-
ily advocated and mostly curated by Keller and colleagues, pro-
viding algorithms, lookup tables, and efficient code for genera-
tion [KK02], scrambling [FK02], and inversion [GRK12], as well
as many articles explaining how to use and manipulate these se-
quences [Kel06; Kel13; GHSK08].

With its unrivaled speed performance, comparable to quasi-
random number generation, Sobol reigned for long as the
fastest imaginable low-discrepancy sequence, and these algorithms
seemed optimal. Quite recently, however, Ahmed et al. [ASHW23]
introduced ξ-sequences: a family of low-discrepancy sequences
that —for the same numerical performance— offer a significant re-
duction of computational cost (speed and memory footprint) com-
pared to Sobol. In the same paper, they demonstrate a linear map-
ping between these sequences and Sobol, suggesting the possibility
of having better algorithms for the latter.

In this paper, we present a novel algorithm for evaluating the sec-
ond (P) dimension of the Sobol sequence, offering a significant per-
formance boost. We extend the idea to inversion, offering an even
better reduction of computational cost, and clearing the main bot-
tleneck of global Sobol sampling. In contrast to inversion, sample
generation is usually far from being the bottleneck in rendering of
very complex scenes. Improving the sampling rate, though, would
not only still count, but also makes it possible to implement some
improvements to the distribution quality of the samples, as we will
discuss later.

2. Related Work

Sobol sequences belong to a larger class of low-discrepancy nets
and sequences, a concept due to Neiderreiter [Nie87] that encom-
passes earlier works by Hammersley [Ham60], Sobol [Sob67], and
Faure [Fau82], as well as new constructions that appeared there-
after. The first two-dimensions of Sobol sequences constituted a
“(0,2)-sequence in base 2” in Neiderreiter’s notation, which con-
stitutes a hierarchical binary tree of (0,m,2)-nets in base 2. The
interested reader is referred to Niederreiter [Nie92] for more de-
tails. Before the recent introduction of ξ-sequences [ASHW23],
the (I,P) Sobol sequence, also known as the 2D Faure sequence,
was the one and only known explicit matrix-based construction of
a (0,2)-sequence, and all alternatives were derived from it either
by Tezuka-scrambling the generator matrices [Tez94] or Owen-
scrambling the resulting points [Owe95; KK02].

The works most related to ours are already mentioned in the in-
troduction, as this area may be considered stable since 2012. In the
following subsections we discuss technical details in more depth,
and cite some other related works.

2.1. Common Implementations

A straightforward computation of a constituent dimension of
the vth Sobol samples initializes an empty accumulator, iterates
through bits of v, from least significant position to the most sig-
nificant set bit, and xor-add the respective column of the matrix to
the accumulator if the bit is set [PJH23, 8.7 Sobol’ Samplers]. The
columns of the matrices are stored in a reverse order to imply bit-
reversal. We trust this is optimal for an arbitrary matrix, as may
be considered the case with the high-dimension constituent matri-
ces of the Sobol sequence. Some matrices, however, may embody
a structure that admits optimization.

The current state of the art in generating 2D Sobol samples, due
to Kollig and Keller [KK02], eliminates the storage of the two (I,P)
matrices. For the identity matrix, they use this common loop-less
C-language sequence

inline	uint32_t	J(uint32_t	i)	{
				i	=	(	i															<<	16)	|	(	i															>>	16);
				i	=	((i	&	0x00FF00FF)	<<		8)	|	((i	&	0xFF00FF00)	>>		8);
				i	=	((i	&	0x0F0F0F0F)	<<		4)	|	((i	&	0xF0F0F0F0)	>>		4);
				i	=	((i	&	0x33333333)	<<		2)	|	((i	&	0xCCCCCCCC)	>>		2);
				i	=	((i	&	0x55555555)	<<		1)	|	((i	&	0xAAAAAAAA)	>>		1);
				return	i;
}

(4)

of bit operations for implementing the implicit bit reversal. The
function is so named J here because it effectively implements mul-
tiplication by the anti-diagonal matrix

J = . (5)

For the Pascal matrix, they compute the columns on the fly using
the original recurrence formula

c j = c j−1 ⊕2−1c j−1 (6)

that defines the matrix in Sobol construction, where ⊕ is bit-wise
vector xor-addition, and 2−1 means shifting the column down by 1
in the semantics of this context.

The Kollig and Keller implementation above is not the only

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.



Ahmed / An Implementation Algorithm of 2D Sobol Sequence: Fast, Elegant, and Compact 3 of 9

common implementation algorithm of the 2D Sobol sequence. In-
deed, Antonov and Saleev [AS79] early presented an exceptionally
fast implementation by using a Gray-code scanning order of sam-
ple indices. Recently, Helmer et al. [HCK21] presented an Owen-
scrambling implementation algorithm that embeds another excep-
tionally fast generation algorithm of the 2D Sobol sequence. The
problem with these algorithms is that they use previous samples to
generate subsequent ones, hence the whole set of samples has to
be generated at once, and in a specific order, which is not suitable
for some samplers, e.g., Global Sobol and Z, that require random
access to samples in the sequence. These techniques, however, pro-
vide a good reference for performance benchmarking.

2.2. Global Sobol Sampling

In contrast to 2D-based samplers, the Global Sobol Sampler
[PJH23] uses a high-dimensional Sobol sequence to sample the
whole scene domain, including the image plane, as a single hyper-
cube. To our knowledge, this idea was first proposed by Grünschloß
et al. [GRK12], and it exhibits superior convergence rates [PJH23]
and decent error diffusion [AW20], which lead to its adoption as
the default sampler in PBRT’s 2nd edition [PJH16], before being
replaced by the ZSampler [AW20] in the third edition [PJH23].
Yet, the global Sobol sampler maintains the best convergence rate
we are aware of.

Global Sobol sampling marginalizes the cost of sampling the first
two dimensions, especially in complex scenes. There is, however,
a new cost of inverting these two dimensions that comes into play.
It works as follows: The image plane is scaled to the unit square.
For each pixel area, we need to retrieve the indices of the samples
falling in that area, and use them back to compute the exact sam-
ple locations in the pixel, as well as their high-dimensional con-
stituents. This operation needs to be done for every single sample,
hence contributes substantially to the cost of global Sobol sam-
pling.

The current state of the art in inversion, due to Grünschloß et
al. [GRK12], uses a complex piece-wise process, and involves a lot
of lookup tables: two per image resolution. The inversion rate in
this process is relatively low, less than 30% of the generation rate,
making a substantial bottleneck in the current PBRT implementa-
tion of global Sobol sampling.

In contrast, the family of ξ-sequences recently introduced by
Ahmed et al. [ASHW23] exhibits a very high inversion rate, ex-
ceeding its own (superior) generation rate. This prompts that there
might exist better algorithms for Sobol, given the linear mapping
between the two.

2.3. Net-to-Sequence Mapping

The Tezuka scrambling [Tez94] mentioned earlier multiplies the
(I,P) generator pair of the Sobol sequence from the left by a pair
(Lx,Ly) of arbitrary lower-triangular matrices to obtain a new pair

(Lx,LyP) (7)

of generator matrices that retains the (0, 2)-sequence properties
when used to replace (I,P) in Eq. (3). Thus, Tezuka scrambling

can randomly sample a large set of Sobol-like variants. Quite
recently, Ahmed et al. [ASHW23] introduced a digital net-to-
sequence translation algorithm that can compute a specific scram-
bling pair (Lx,Ly) to reproduce a given matrix-generated (0, m,
2)-net, but reordering the points into a hierarchical Sobol-like (0,
2)-sequence. For a given (Cx,Cy) pair of generator matrices that is
known to produce a (0, m, 2)-net, the algorithm may be summa-
rized in the following algebraic refactoring

(Cx,Cy)V = (J,CyC−1
x J)JCxV (8)

= (J,LU)JCxV (9)

= (JU−1,L)UJCxV (10)

= (JU−1PJ,LPJ)JP−1UJCxV (11)

= (JU−1PJ︸ ︷︷ ︸
Lx

,LJPJ︸ ︷︷ ︸
Ly

P)JPUJCxV︸ ︷︷ ︸
V ′

, (12)

which takes advantages of many properties, including (i) the LU-
decomposability of any generator matrix that pairs with J into a (0,
m, 2)-net, (ii) the self-inversion of P, (iii) the

PJPJPJ = I (13)

identity, and (v) the invertibility (full-rank) of JPUJCx that main-
tains the full set of indices. The interested reader is referred to
Ahmed et al. [ASHW23] for detailed analysis and proofs. Using
this refactoring, it is possible to reorderd some interesting (0, m,
2)-nets into a Sobol-like sequence. We will integrate some of these
later into our algorithm.

3. Fast 2D Sobol

In this section we present our suggested algorithms for boosting the
performance of Sobol-based samplers, addressing different aspects
through successive subsections.

3.1. Generation

The key observation that prompted our work is that the Pascal ma-
trix P, as visualized in Eq. (1), exhibits a geometrical structure,
namely a Sierpiński triangle, that embodies many partial transla-
tion symmetries. For example, shifting the 32×32 Pascal matrix 16
steps to the right gives a neat overlap

(14)

that may be eliminated if we xor-add the original and shifted ma-
trices. Similar overlaps,

, , , , (15)

occur at other power-of-two shifts, but are not as perfect as the
16-steps one, leading to setting some clear entries in the matrix.
However, perfect overlaps,

, , , , (16)

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.



4 of 9 Ahmed / An Implementation Algorithm of 2D Sobol Sequence: Fast, Elegant, and Compact

may be obtained if we first mask every other band of columns of
a width equal to the shift. We obtain the following result for xor-
addition of the original and shifted matrices:

, , , , . (17)

Finally, we note that concatenating these mask-shift-xor-add oper-
ations, in any order, would completely clear the off-diagonal ele-
ments of the matrix.

Through this sequence of visual thoughts we were able to con-
ceive our algorithm, as we present next. We first translate these geo-
metric descriptions into algebraic manipulations, which is straight-
forward: (i) shifting to the right is equivalent to multiplying from
the right by an equally shifted identity matrix, (ii) masking is equiv-
alent to clearing the respective diagonal bits, (iii) xor-addition to
the original matrix is equivalent to including the main diagonal
in the multiplied matrix, and (iv) concatenating the operations is
equivalent to consecutively multiplying from the right by the re-
spective matrices. Since this would clear the matrix, the product of
so-constructed matrices constitutes the inverse Pascal matrix. No-
tably, the Pacal matrix inverts itself, hence it may be factored into
the set , , , ,

 (18)

of factors. The essence of this factoring is that multiplying such
diagonally running matrices by a column vector directly translates
into simple masking/shifting of the vector by the same mask/shift
of the diagonals, and the result is xor-summed over the diagonals
of a multi-diagonal matrix. This leads to the following compact
algorithm

inline	uint32_t	P(uint32_t	v)	{
				v	^=		v															<<	16;
				v	^=	(v	&	0x00FF00FF)	<<		8;
				v	^=	(v	&	0x0F0F0F0F)	<<		4;
				v	^=	(v	&	0x33333333)	<<		2;
				v	^=	(v	&	0x55555555)	<<		1;
				return	v;
}

(19)

for computing the second Sobol dimension, where v is a bit-
reversed representation of the sample index. This is especially use-
ful if the (x,y) pair of coordinates is evaluated together, which is
quite common, in which case x would be computed first using fast
bit reversal, then plugged as v in Listing (19). If the second (y) com-
ponent has to be evaluated separately then we may use Listing (4)
first for bit reversal.

Computing 2D Sobol samples accounts for almost all the com-
putational cost of PBRT’s (0, 2)-sequence sampler, and contributes
significantly to the cost of the ZSampler [AW20], hence this makes
a tangible difference to the sampling cost in these samplers.

3.2. Inversion

Towards fast inversion of 2D Sobol sequence, we start by analysing
the canonical ξ-sequence to reveal the reasons behind its superior

performance. It replaces (I,P) by the ξ = , ξ
+ =

 (20)

pair of matrices. A fast inversion advantage of this sequence is al-
ready reflected in its generator matrices. To reveal it, we interleave
x and y bits for Morton ordering, making x more significant for
best visualization, then the rows of the two matrices have to be in-
terleaved accordingly to get

ξz = , ξ
−1
z = (21)

for transforming a sequence number to a Morton index and back.
The essence of this lower-triangular pair of matrices is that sample
points sharing leading bits in their Morton index would share lead-
ing bits in their (bit-reversed) sequence numbers, and the reverse.
This means that all samples in the pixel would share the same suf-
fix in their sequence numbers, and are linearly ordered in their ap-
pended higher-ordered bits. Beyond that, the two matrices look ripe
for diagonal-matrix factoring, though Ahmed et al. took advantage
instead of another property that the matrices are made up of a stair-
like pair of columns.

This property of lower-triangular Morton matrix in ξ-sequences
is applicable to the 2D Sobol sequence by multiplying an appropri-
ate reordering matrix,

(I,P)


=

 ξu = , ξ
+
u =

 .

(22)
The interested reader is referred to Helmer et al. [HCK21, Supple-
mental Materials] or Hofer and Pirsic [HP11] for an explicit con-
struction of the reordering matrix, but as it turns out, the resulting
pair of matrices coincide with the upper-triangular factors of the ξ

pair of matrices [ASHW23], hence the names in Eq. (22). This pair
of matrices generates the same 2D Sobol sequence, but permutes
the order of points over power-of-two octaves, which should not
affect the rendering outcomes in global Sobol sampling.

Our initial vision for fast Sobol inversion was to completely re-
place (I,P) by their (ξu,ξ

+
u ) counterparts, which requires multiply-

ing all high-dimensional matrices by the same reordering matrix ξu,
as described in [ASHW23]. Bearing a resembling geometric struc-
ture to P, the generator matrices can easily be factored similarly to
diagonally-running matrices, e.g.,

ξu = , (23)

with a slight difference that the factors are no longer commuting
like P’s, and have to be applied in a fixed order.

Not to our favor, however, the absence of the lower-triangular
factor ξl played a detrimental role, as the resulting inverse Morton-

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.



Ahmed / An Implementation Algorithm of 2D Sobol Sequence: Fast, Elegant, and Compact 5 of 9

ordering matrix

ξuz = =⇒ ξ
−1
uz = (24)

is skewed; that is, similar blocks are not aligned along a single axis
as needed in our method. Despite the evident self-similar struc-
ture, we failed to factor this inversion matrix into a reasonable
number of diagonally running factors, ideally 5. While we made
many attempts, we do not claim exhaustion, and a feasible fac-
toring may still be available. Alternatively, there is still an option
of falling back to conventional matrix-vector multiplication for in-
version. While we trust this would still be faster than the current
state of the art, and saves on lookup tables, we were not satisfied
with this option. Indeed, after taking the effort of reordering the
higher-dimensional tables, it is arguably more feasible to migrate
altogether to a ξ-based sampler.

After a lot of experimentation we arrived at a satisfactory solu-
tion; notably, while attempting to prove the opposite. We proceed
to present our proposed inversion algorithm while discussing the
steps. We start by assembling a conversion/inversion pair of matri-
ces akin to the Morton ordering ones above. However, instead of
interleaving the x and y bits, we choose a more convenient combi-
nation by keeping the bits of each coordinate together:

IP = , IP−1 = . (25)

which is encoded as

uint32_t	v	=	((p.x	<<	16)	|	p.y)	<<	(16	-	m); (26)

in practice, which indexes the bottom-left corner of pixel p in a
2−16 ×2−16 grid resolution of the unit-size image, in a row-major
ordering. Not only easier to implement, but this I : P concatenated
matrix makes it much easier to see the way forward. For example,
we were easily able to find the inverse by hand using the block
matrices.

Factoring the inverse matrix into diagonally running factors is
straightforward: we first split the lower-triangular diagonal factor,
then factor the upper part akin to P:

, (27)

which translates to

inline	uint32_t	IP_inv	(uint32_t	v)	{
				v	^=	(v	&	0x3333)	<<		2;
				v	^=	(v	&	0x5555)	<<		1;
				v	^=	(v	&	0x0F0F)	<<		4;
				v	^=	(v	&	0x00FF)	<<		8;
				v	^=		v											>>	16;
				return	v;
}

(28)

in code. The key trick now is to translate this index in (I,P) order-
ing into a corresponding index in (ξu,ξ

+
u ) ordering, taking advan-

tage of the linear mapping between the two. This requires multiply-

ing the index by

ξ
−1
u = , (29)

which we may obtain directly from Eq. (23) by inverting the factors
and inverting their order. The corresponding code

inline	uint32_t	xi_u_inv(uint32_t	v)	{
				v	^=	((v	&	0x0000FFFF)	<<	8)	^	((v	&	0x000000FF)	<<	16);
				v	^=	((v	&	0x00FF00FF)	<<	4)	^	((v	&	0x000F000F)	<<		8);
				v	^=	((v	&	0x0F0F0F0F)	<<	2)	^	((v	&	0x03030303)	<<		4);
				v	^=	((v	&	0x33333333)	<<	1)	^	((v	&	0x11111111)	<<		2);
				return	v;
}

(30)

achieves the required index translation. Now we have the index of
a sample inside pixel p, not necessarily the first one, in (ξu,ξ

+
u )

ordering. The essence of this ordering, as mentioned, is that the
global sample index is partitioned into a pixel index and the index
of the sample inside the pixel, hence we can easily retrieve the pixel
index

v	=	J(v)	&	((1	<<	m2)	-	1); (31)

in a normal ordering, still using (ξu,ξ
+
u ) ordering, where

m2 = 2 ·m (32)

is the overall image bit resolution, split equally between the two
axes.

Now we proceed to retrieve an ith sample inside the pixel, as
would be queried by the rendering integrator. The index of the
queried sample inside the pixel is given in (I,P) order, so we have
to translate it in (ξu,ξ

+
u ) ordering before appending it to the pixel

index retrieved above. This step is optional: if we just append the
sample number then we would get exactly the same power-of-two-
sized block of samples in a different order, which should not make
a difference. However, we find it a good practice in presenting a
drop-in replacement to ensure identical outcomes. The conversion
of sample number to (ξu,ξ

+
u ) ordering involves the same ξ

−1
u map-

ping in Listing (30), with two differences. First, there is a chance
that the global sample index may exceed 232, so it is more appro-
priate to perform this and the following step in 64-bit resolution.
Secondly, the sample number is provided in normal ordering, re-
quiring bit reversal. Since the final outcome is also in normal bit
ordering, it makes more sense to use Jξ

−1
u J, a half-cycle rotation

of the matrix, hence

inline	uint64_t	Jxi_u_invJ(uint64_t	v)	{
				v	^=	((v	&	0xFFFFFFFF00000000ll)	>>	16)	^	((v	&	0xFFFF000000000000ll)	>>	32);
				v	^=	((v	&	0xFFFF0000FFFF0000ll)	>>		8)	^	((v	&	0xFF000000FF000000ll)	>>	16);
				v	^=	((v	&	0xFF00FF00FF00FF00ll)	>>		4)	^	((v	&	0xF000F000F000F000ll)	>>		8);
				v	^=	((v	&	0xF0F0F0F0F0F0F0F0ll)	>>		2)	^	((v	&	0xC0C0C0C0C0C0C0C0ll)	>>		4);
				v	^=	((v	&	0xCCCCCCCCCCCCCCCCll)	>>		1)	^	((v	&	0x8888888888888888ll)	>>		2);
				return	v;
}

(33)
does the appropriate transformation, while

sampleNo	=	Jxi_u_invJ(sampleNo	<<	m2)	&	(0xFFFFFFFFFFFFFFFFllu	<<	m2); (34)

applies it to a pixel sample number. The pixel index and pixel sam-
ple number in (ξu,ξ

+
u ) ordering are then combined, and the final

step is to transform back to the (I,P) ordering using the ξu in

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.



6 of 9 Ahmed / An Implementation Algorithm of 2D Sobol Sequence: Fast, Elegant, and Compact

Eq. (23), encoded as

inline	uint64_t	Jxi_uJ	(uint64_t	v)	{
				v	^=	(v	&	0xCCCCCCCCCCCCCCCCllu)	>>		1;
				v	^=	(v	&	0xF0F0F0F0F0F0F0F0llu)	>>		2;
				v	^=	(v	&	0xFF00FF00FF00FF00llu)	>>		4;
				v	^=	(v	&	0xFFFF0000FFFF0000llu)	>>		8;
				v	^=	(v	&	0xFFFFFFFF00000000llu)	>>	16;
				return	v;
}

(35)

using normal bit ordering and 64-bit resolution. Finally, the func-
tion

inline	uint64_t	invIP(int	m,	const	Point	&p,	uint64_t	sampleNo)	{
				if	(m	==	0)	return	0;
				int	m2	=	m	<<	1;
				uint32_t	v	=	((p.x	<<	16)	|	p.y)	<<	(16	-	m);
				v	=	IP_inv(v);
				v	=	xi_u_inv(v);
				v	=	bitReverse(v);
				v	&=	((1	<<	m2)	-	1);
				sampleNo	=	Jxi_u_invJ(sampleNo	<<	m2);
				sampleNo	&=	0xFFFFFFFFFFFFFFFFllu	<<	m2;
				return	JxiJ(v	|	sampleNo);
}

(36)

sums up the preceding steps. This concludes our implementation of
Sobol inversion to retrieve sample indices. While much faster and
compact than state of the art, we still think there might be a small
room for further optimization.

3.3. 2D Sample Distribution

Up until now, we are still generating the 2D Sobol sequence as
is, without altering the sample distribution. Nets derived from 2D
Sobol sequence are not considered the best: there are constructions
of standalone nets that are believed to be better, including the Ham-
mersley [Ham60]

(X ,Y ) = (J, I)V (37)

Larcher-Pillichshammer [LP03]

(X ,Y ) =
(

J,CLP =
)

V , (38)

and Gray [AW21] family of nets are widely believed to be superior
by different quality measures. Grünschloß et al. [GHSK08] pre-
sented a net construction generator pairJ,CMMDe =

 (39)

that is believed to generate (0,m,2)-nets with the largest maxi-
mized minimum distance (MMD) between points among all ma-
trix generated nets with even m, and a similar construction for odd
m. Pharr et al. [PJH16] attempted a sampler for PBRT employing
these nets, but the model was far from optimal, and retired in the
following edition [PJH23]. The problem is two fold: the same net
is replicated over all pixels, raising well known aliasing flags, and
the high dimensions are sampled using 2D samples like the (0,2)-
Sampler, losing the advantages of global sampling.

It would be great if it is possible to integrate these good 2D sam-
pling distribution into the Global Sobol Sampler, which is possi-
ble using the net-to-sequence mapping of Ahmed et al. [ASHW23]
mentioned in Section 2.3. That is, the LU factors of a generator ma-
trix paired with J are embedded into lower-triangular scrambling
matrices of the Sobol sequence. This makes it possible to integrate
redistributing the pixel samples favorably as a post-processing step

after generating the samples. Doing so, however, would undo all
our preceding optimization effort, so we aim at a better treatment.

We start by noting that

Lx = JU−1PJ = JU−1JJPJ , (40)

hence JPJ is a common factor to all the digital re-distributions that
we may want to handle first. As pointed out earlier for JξuJ, en-
closing between two J matrices is just a 180◦rotation of the matrix,
leading to an algorithm

inline	uint32_t	JPJ(uint32_t	v)	{
				v	^=		v															>>	16;
				v	^=	(v	&	0xFF00FF00)	>>		8;
				v	^=	(v	&	0xF0F0F0F0)	>>		4;
				v	^=	(v	&	0xCCCCCCCC)	>>		2;
				v	^=	(v	&	0xAAAAAAAA)	>>		1;
				return	v;
}

(41)

quite similar to the P one in Listing (19). This is then multiplied
from left by the (JU−1J,L) pair of lower-triangular scrambling
matrices of the desired distribution. There is a small caveat here,
though, that needs to be handled appropriately. The Pascal matrix
P in Eq. (12) is clipped to the bit resolution m of the target net. For
example, for a 26 Hammersley net, we use

J = , (42)

rather than the

(43)

we find at the top of the 32-bit JPJ. This is a bit confusing, because
the scrambling applies to the most significant bits. It took us a while
to identify that the appropriate scrambling bits are actually the ones
in the bottom rows of the JPJ matrix, and the vector needs to be
brought down. Specifically,

inline	uint32_t	JPJ(uint32_t	v,	int	m)	{
				return	(JPJ(v	>>	(32	-	m))	<<	(32	-	m))	|	(v	&	(0xFFFFFFFF	>>	m));
}

(44)

achieves the task, leading to

inline	void	hammersley(Points	&p)	{
				int	m	=	__builtin_ctz(p.size());
				for	(uint32_t	i	=	0;	i	<	p.size();	i++)	{
								uint32_t	x	=	J(i);
								uint32_t	y	=	P(x);
								p[i]	=	{JPJ(x,	m),	JPJ(y,	m)};
				}
}

(45)

for the Hammersley net optimization. That is, the points of a Sobol
sequence are automatically rearranged in a Hammersley net of the
desired size 2m. Ideally, this would be the overall number of sam-
ples for the whole image; i.e., (number of pixels) × (samples per
pixel). If more or fewer samples than the designated m are taken,
they would lose the optimal net distribution, but still retain the net
properties of the underlying Sobol sequence.

The Hammersley net distribution is the easiest, but by no means
the only attainable one. Fortunately, though not quite surprisingly,
all the interesting net classes enumerated above admit simple di-
agonal factoring, making them easy to integrate in our code. For
the LP nets, for example, we only have an all-ones U factor. The
inverse of this, notably, is a Gray code matrix

G = , (46)

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.



Ahmed / An Implementation Algorithm of 2D Sobol Sequence: Fast, Elegant, and Compact 7 of 9

which is already in the desired form, encoded as

inline	uint32_t	G(uint32_t	x,	int	m)	{
				uint32_t	v	=	JPJ(x	>>	(32	-	m));
				v	^=		v	>>	1;
				return	(v	<<	(32	-	m))	|	(x	&	(0xFFFFFFFF	>>	m));
}

(47)

to give the following code for LP-net rearrangement of the Sobol
sequence:

inline	void	LP(Points	&p)	{
				int	m	=	__builtin_ctz(p.size());
				for	(uint32_t	i	=	0;	i	<	p.size();	i++)	{
								uint32_t	x	=	J(i);
								uint32_t	y	=	P(x);
								p[i]	=	{G(x,	m),	JPJ(y,	m)};
				}
}

. (48)

For the MMD net rearrangement, we LU-decompose the mid-
dlemost 6×6 matrix, then invert and rotate the upper factor to get

(Lx,Ly) =
(

,
)

(49)

already in a usable form. However, the bit-masks need to be shifted
by (m− 6)/2 from the bottom to center the matrix at the m×m
window. Here is the complete code

inline	uint32_t	mmdX(uint32_t	x,	int	m)	{
				uint32_t	v	=	JPJ(x	>>	(32	-	m));
				int	padding	=	(m	-	6)	>>	1;
				v	^=	(v	&	(0x10	<<	padding))	>>	1;
				return	(v	<<	(32	-	m))	|	(x	&	(0xFFFFFFFF	>>	m));
}

inline	uint32_t	mmdY(uint32_t	y,	int	m)	{
				uint32_t	v	=	JPJ(y	>>	(32	-	m));
				int	padding	=	(m	-	6)	>>	1;
				v	^=	(
								((v	&	(0x30	<<	padding))	>>	1)	^
								((v	&	(0x08	<<	padding))	>>	2)
				);
				return	(v	<<	(32	-	m))	|	(y	&	(0xFFFFFFFF	>>	m));
}

inline	void	mmd(Points	&p)	{
				int	m	=	__builtin_ctz(p.size());
				for	(uint32_t	i	=	0;	i	<	p.size();	i++)	{
								uint32_t	x	=	J(i);
								uint32_t	y	=	P(x);
								p[i]	=	{mmdX(x,	m),	mmdY(y,	m)};
				}
}

(50)

split into parts to accommodate the case of separate computation of
x and y.

Figure 1 shows samples of the three distributions generated by
our code listings above, which is also available in the supplemen-
tary materials.

3.4. Higher Dimensions

While our focus in this paper is on the first two dimensions, we
briefly mention a “free” related opportunity for improving the dis-
tribution in high dimensions as well. The current state-of-the-art
tables of Sobol matrices, due to Joe and Kuo [JK08], use upper-
triangular matrices, as defined in Sobol construction. These may
be scrambled with random lower-triangular matrices to gain better
coverage. The process is offline, so may be considered free.

4. Evaluation

We now benchmark our implementation against state of the art to
evaluate the gains and costs.

Table 1: Generation rates, in million 2D sample per second
(MSPS), of different sequence generation codes, including non-
Sobol ones. The benchmarks were conducted on a contemporary
laptop with an Intel Core i7-10510U CPU.

Algorithm Rate ×Ref

PBRT [PJH16] 59 1.00
Ours (vanilla) 340 5.75
Ours (+ MMD rearrangement) 114 1.94
Helmer [HCK21] 466 7.87
Gray Code Scan Order [AS79] 1119 18.91
ξ [ASHW23] 84 1.42
Random (std::mt19937) [MN98] 185 3.13

4.1. Speed

This is possibly the most important measure for a low-level code
element like Sobol samples. In Table 1 we benchmark the perfor-
mance of our generation algorithm against various state-of-the-art
alternatives. For Helmer [HCK21] we removed the randomization
code, leaving only the Sobol generation part. While it and Gray-
code scanning are not well-suited for real-time rendering in sam-
plers requiring random access, it serves as a good reference.

The advantage of our method is evident, even with the rearrange-
ment of the samples. This gain is close to the ratio of time complex-
ity: O(m) columns vs O(log(m)) diagonals, hence may increase for
64 bits. Another factor contributing to our advantage is the elimi-
nation of loops.

Our algorithm truly surpasses previous algorithms when it comes
to inversion, attaining a rate of 400 MSPS, compared to less than 20
MSPS for PBRT code. This is not only more than 20 times faster,
but the 20 MSPS rate is really slow, and may be considered a bot-
tleneck. In the supplementary materials we provide the code used
for this benchmarking, which includes more variations.

4.2. Memory footprint

The state of the art generation of 2D Sobol is already table-less,
as we discussed earlier. For the inversion, however, our table-less
implementation, compared to state of the art, saves 1352 64-bit in-
tegers in two 2D-structured lookup tables. This is a considerable
saving, especially for GPU processing.

4.3. Quality

The LP distribution in Figure 1(c) is known to bear the least dis-
crepancy among digital nets [LP03], while the MMD one in Fig-
ure 1(d) is established to bear the largest miminum distance be-
tween points among digital nets. Thus, our algorithm attains the
maximum quality in these measures, and avails this quality to dif-
ferent Sobol-based samplers at a negative cost compared to the
available implementations. There is a long standing belief that these
two quality measure are yielding. Validating these beliefs, however,
is far beyond the scope of our work, and we can not make a claim
of improving the actual rendering quality. What we can claim, how-
ever, is that our distribution rearrangements are effectively costless,

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.



8 of 9 Ahmed / An Implementation Algorithm of 2D Sobol Sequence: Fast, Elegant, and Compact

making it possible to empirically evaluate these quality measures
extensively.

4.4. Coding Complexity

Almost all the actual code is already in the paper, and may directly
be copied from here. The code in the supplementary materials also
includes more variations.

5. Conclusion

In this paper we presented a novel implementation of the 2D Sobol
sequence, covering both generation and inversion. Our algorithm
offers significant gains in both speed and memory footprint, and
avails further improvements, all at no cost to mention. The actual
cost we had to pay for these improvements is a deeper understand-
ing of the matrix structure, which emphasises the importance of
in-depth study of the tools we use.

It is arguable that the current 60 MSPS is already enough for
practical purposes. However, for a process that has to be repeated
billions of times per single image, every performance improvement
is welcome. We actually demonstrated the value of our speed per-
formance improvements by integrating quality improvements that
would have been considered infeasible before.

We learned a lot through this narrow scope, and could see multi-
ple opportunities for future follow up. For example, we learned that
diagonal factoring pays off, so it would be great to see automatic
algorithms for that, instead of our manual inspection. The way they
are computed suggests that other Sobol matrices may have simple
factoring like P.

Finally, we want to emphasize the important role of “compe-
tition” in research development. A part of our motivation in this
work was to defend the classic Sobol against the new ξ-sequence.
Now we are already considering the opposite, and actually started
searching for further optimization of the latter. This spirit may es-
pecially be exploited among students, and many such real-life low-
level coding problems may be pushed via student competitions.

References
[AS79] ANTONOV, I.A. and SALEEV, V.M. “An economic method

of computing LP-sequences”. USSR Computational Mathematics and
Mathematical Physics 19.1 (1979), 252–256. ISSN: 0041-5553. DOI:
https://doi.org/10.1016/0041-5553(79)90085-5 3, 7.

[ASHW23] AHMED, ABDALLA G. M., SKOPENKOV, MIKHAIL, HAD-
WIGER, MARKUS, and WONKA, PETER. “Analysis and Synthesis of
Digital Dyadic Sequences”. ACM Trans. Graph. 42.6 (Dec. 2023). DOI:
10.1145/3618308 2–4, 6, 7.

[AW20] AHMED, ABDALLA G. M. and WONKA, PETER. “Screen-Space
Blue-Noise Diffusion of Monte Carlo Sampling Error via Hierarchical
Ordering of Pixels”. ACM Trans. Graph. 39.6 (Nov. 2020). ISSN: 0730-
0301. DOI: 10.1145/3414685.3417881. URL: https://doi.
org/10.1145/3414685.3417881 3, 4.

[AW21] AHMED, ABDALLA G. M. and WONKA, PETER. “Optimizing
Dyadic Nets”. ACM Trans. Graph. 40.4 (July 2021). ISSN: 0730-0301.
DOI: 10.1145/3450626.3459880. URL: https://doi.org/
10.1145/3450626.3459880 6.

[BF88] BRATLEY, PAUL and FOX, BENNETT L. “Algorithm 659: Imple-
menting Sobol’s Quasirandom Sequence Generator”. ACM Trans. Math.
Softw. 14.1 (Mar. 1988), 88–100. ISSN: 0098-3500. DOI: 10.1145/
42288.214372. URL: https://doi.org/10.1145/42288.
214372 2.

[CPC84] COOK, ROBERT L., PORTER, THOMAS, and CARPENTER,
LOREN. “Distributed Ray Tracing”. SIGGRAPH Comput. Graph. 18.3
(Jan. 1984), 137–145. ISSN: 0097-8930. DOI: 10.1145/964965.
808590. URL: https : / / doi . org / 10 . 1145 / 964965 .
808590 1.

[Fau82] FAURE, HENRI. “Discrépance de Suites Associées à un Sys-
tème de Numération (en Dimension s)”. fre. Acta Arithmetica 41.4
(1982), 337–351. URL: http://eudml.org/doc/205851 2.

[FK02] FRIEDEL, ILJA and KELLER, ALEXANDER. “Fast Generation of
Randomized Low-Discrepancy Point Sets”. Monte Carlo and Quasi-
Monte Carlo Methods 2000. Springer, 2002, 257–273 2.

[GHSK08] GRÜNSCHLOSS, LEONHARD, HANIKA, JOHANNES,
SCHWEDE, RONNIE, and KELLER, ALEXANDER. “(t, m, s)-Nets and
Maximized Minimum Distance”. Monte Carlo and Quasi-Monte Carlo
Methods 2006. Ed. by KELLER, ALEXANDER, HEINRICH, STEFAN,
and NIEDERREITER, HARALD. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2008, 397–412. ISBN: 978-3-540-74496-2 2, 6.

[GRK12] GRÜNSCHLOSS, LEONHARD, RAAB, MATTHIAS, and KELLER,
ALEXANDER. “Enumerating Quasi-Monte Carlo Point Sequences in
Elementary Intervals”. Monte Carlo and Quasi-Monte Carlo Methods
2010. Ed. by PLASKOTA, LESZEK and WOŹNIAKOWSKI, HENRYK.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, 399–408. ISBN:
978-3-642-27440-4 2, 3.

[Ham60] HAMMERSLEY, J. M. “Monte Carlo Methods for Solving Mul-
tivariable Problems”. Annals of the New York Academy of Sciences 86.3
(1960), 844–874. DOI: https://doi.org/10.1111/j.1749-
6632.1960.tb42846.x 2, 6.

[HCK21] HELMER, ANDREW, CHRISTENSEN, PER, and KENSLER, AN-
DREW. “Stochastic Generation of (t, s) Sample Sequences”. Eurograph-
ics Symposium on Rendering - DL-only Track. Ed. by BOUSSEAU,
ADRIEN and MCGUIRE, MORGAN. The Eurographics Association,
2021. ISBN: 978-3-03868-157-1. DOI: 10.2312/sr.20211287 3,
4, 7.

[HP11] HOFER, ROSWITHA and PIRSIC, GOTTLIEB. “An Explicit Con-
struction of Finite-Row Digital (0, s)-Sequences”. Unif. Distrib. Theory
6.2 (2011), 13–30 4.

[JK08] JOE, STEPHEN and KUO, FRANCES Y. “Notes on Generat-
ing Sobol Sequences”. ACM Transactions on Mathematical Software
(TOMS) 29.1 (2008), 49–57 7.

[Kel06] KELLER, ALEXANDER. “Myths of Computer Graphics”. Monte
Carlo and Quasi-Monte Carlo Methods 2004. Springer, 2006, 217–
243 2.

[Kel13] KELLER, ALEXANDER. “Quasi-Monte Carlo Image Synthesis in
a Nutshell”. Monte Carlo and Quasi-Monte Carlo Methods 2012. Ed. by
DICK, JOSEF, KUO, FRANCES Y., PETERS, GARETH W., and SLOAN,
IAN H. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, 213–249.
ISBN: 978-3-642-41095-6 2.

[KK02] KOLLIG, THOMAS and KELLER, ALEXANDER. “Efficient Mul-
tidimensional Sampling”. Computer Graphics Forum. Vol. 21. 3.
2002, 557–563 2.

[LP03] LARCHER, G and PILLICHSHAMMER, F. “Sums of Distances to
the Nearest Integer and the Discrepancy of Digital Nets”. Acta Arith-
metica 106 (2003), 379–408 6, 7.

[MN98] MATSUMOTO, MAKOTO and NISHIMURA, TAKUJI. “Mersenne
twister: a 623-dimensionally equidistributed uniform pseudo-random
number generator”. ACM Trans. Model. Comput. Simul. 8.1 (Jan.
1998), 3–30. ISSN: 1049-3301. DOI: 10.1145/272991.272995.
URL: https://doi.org/10.1145/272991.272995 7.

[Nie87] NIEDERREITER, HARALD. “Point Sets and Sequences with Small
Discrepancy”. Monatshefte für Mathematik 104.4 (1987), 273–337 2.

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

https://doi.org/https://doi.org/10.1016/0041-5553(79)90085-5
https://doi.org/10.1145/3618308
https://doi.org/10.1145/3414685.3417881
https://doi.org/10.1145/3414685.3417881
https://doi.org/10.1145/3414685.3417881
https://doi.org/10.1145/3450626.3459880
https://doi.org/10.1145/3450626.3459880
https://doi.org/10.1145/3450626.3459880
https://doi.org/10.1145/42288.214372
https://doi.org/10.1145/42288.214372
https://doi.org/10.1145/42288.214372
https://doi.org/10.1145/42288.214372
https://doi.org/10.1145/964965.808590
https://doi.org/10.1145/964965.808590
https://doi.org/10.1145/964965.808590
https://doi.org/10.1145/964965.808590
http://eudml.org/doc/205851
https://doi.org/https://doi.org/10.1111/j.1749-6632.1960.tb42846.x
https://doi.org/https://doi.org/10.1111/j.1749-6632.1960.tb42846.x
https://doi.org/10.2312/sr.20211287
https://doi.org/10.1145/272991.272995
https://doi.org/10.1145/272991.272995


Ahmed / An Implementation Algorithm of 2D Sobol Sequence: Fast, Elegant, and Compact 9 of 9

[Nie92] NIEDERREITER, HARALD. Random Number Generation and
Quasi-Monte Carlo Methods. SIAM, 1992 1, 2.

[Owe95] OWEN, ART B. “Randomly Permuted (t,m,s)-Nets and (t, s)-
Sequences”. Monte Carlo and Quasi-Monte Carlo Methods in Scientific
Computing. Ed. by NIEDERREITER, HARALD and SHIUE, PETER JAU-
SHYONG. New York, NY: Springer New York, 1995, 299–317. ISBN:
978-1-4612-2552-2 2.

[PJH16] PHARR, MATT, JAKOB, WENZEL, and HUMPHREYS, GREG.
Physically Based Rendering: From Theory to Implementation. 3rd. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2016. ISBN:
0128006455 3, 6, 7.

[PJH23] PHARR, MATT, JAKOB, WENZEL, and HUMPHREYS, GREG.
Physically Based Rendering: From Theory to Implementation. 4th. MIT
Press, 2023. ISBN: 0262048027 1–3, 6.

[Sob67] SOBOL’, IL’YA MEEROVICH. “On the Distribution of Points in a
Cube and the Approximate Evaluation of Integrals”. Zhurnal Vychisli-
tel’noi Matematiki i Matematicheskoi Fiziki 7.4 (1967), 784–802 1, 2.

[Tez94] TEZUKA, SHU. “A Generalization of Faure Sequences and its Effi-
cient Implementation”. Technical Report, IBM Research, Tokyo Research
Laboratory (1994). DOI: 10.13140/RG.2.2.16748.16003 2, 3.

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

https://doi.org/10.13140/RG.2.2.16748.16003



